Amazon Ratings

Graph Task Level: Node

Description

Amazon Ratings

Dataset Overview

Lifting Methods

Structural-based Liftings
Feature Lifting
  • Projected sum

Model Performance

ModelAccuracyStd Dev
GCN49.560.55
GIN49.161.02
GAT50.170.59
AST50.500.27
EDGNN48.180.09
UniGNN249.060.08
CWN51.900.15
CCCN50.260.17
SCCNNOOMOOM
SCNOOMOOM

Key Insights

  • CWN achieves the best performance with 51.90 ± 0.15 accuracy
  • Most models perform in the 48–51% range, with CWN outperforming others by a notable margin
  • GIN shows relatively high variability (±1.02)
  • EDGNN shows the most stable results with lowest std dev (±0.09)
  • SCCNN and SCN ran out of memory (OOM)
Reproducibility
python -m topobench model=cell/cwn dataset=graph/amazon_ratings optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=4 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBench --multirun