Citeseer

Graph Task Level: Graph

Description

Citeseer

Dataset Overview

Lifting Methods

Structural-based Liftings
Feature Lifting
  • Projected sum

Model Performance

ModelAccuracy (%)Std Dev (±)
GCN75.531.27
GIN73.731.23
GAT74.411.75
AST73.852.21
EDGNN74.931.39
UniGNN274.721.08
CWN75.201.82
CCCN75.631.58
SCCNN70.232.69
SCN71.241.68

Key Insights

  • CCCN achieves the best performance with 75.63% accuracy
  • Most models perform in the 70-76% accuracy range
  • AST shows the highest variability (±2.21)
  • UniGNN2 shows the most stable results with lowest std dev (±1.08)
Reproducibility
python -m topobench model=cell/cccn dataset=graph/cocitation_citeseer optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.n_layers=1 model.readout.readout_name=NoReadOut model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBench --multirun