IMDB-BINARY

Graph Task Level: Graph

Description

IMDB-BINARY

Dataset Overview

Lifting Methods

Structural-based Liftings
Feature Lifting
  • Projected sum

Model Performance

ModelAccuracy (%)Std Dev (±)
GCN72.002.48
GIN70.961.93
GAT69.762.65
AST70.323.27
EDGNN69.122.92
UniGNN271.041.31
CWN70.402.02
CCCN69.122.82
SCCNN70.882.25
SCN70.802.38

Key Insights

  • GCN achieves the best performance with 72.00% accuracy
  • Most models perform in the 69-71% range, with UniGNN2 and SCCNN also above 71%
  • GCN shows the highest accuracy, while UniGNN2 is the most stable (±1.31)
  • AST shows the highest variability (±3.27)
Reproducibility
python -m topobench model=graph/gcn dataset=graph/IMDB-BINARY optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.num_layers=2 model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=256 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBench --multirun @imdb-binary.md