IMDB-MULTI

Graph Task Level: Graph

Description

IMDB-MULTI

Dataset Overview

Lifting Methods

Structural-based Liftings
Feature Lifting
  • Projected sum

Model Performance

ModelAccuracy (%)Std Dev (±)
GCN49.972.16
GIN47.684.21
GAT50.133.87
AST50.512.92
EDGNN49.174.35
UniGNN249.763.55
CWN49.712.83
CCCN47.793.45
SCCNN48.753.98
SCN49.495.08

Key Insights

  • AST achieves the best performance with 50.51% accuracy
  • Model accuracies range from 47.68% (GIN) to 50.51% (AST)
  • SCN shows the highest variability (±5.08), while AST is both the most accurate and relatively stable (±2.92)
  • Most models perform within a narrow band, with several models above 49%
Reproducibility
python -m topobench model=hypergraph/allsettransformer dataset=graph/IMDB-MULTI optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.n_layers=4 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=256 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBench --multirun