Minesweeper

Graph Task Level: Graph

Description

Minesweeper

Dataset Overview

Lifting Methods

Structural-based Liftings
Feature Lifting
  • Projected sum

Model Performance

ModelAccuracy (%)Std Dev (±)
GCN87.520.42
GIN87.820.34
GAT89.640.43
AST81.140.05
EDGNN84.520.05
UniGNN278.020.00
CWN88.620.04
CCCN89.420.00
SCCNN89.00.00
SCN90.320.11

Key Insights

  • SCN achieves the best performance with 90.32% accuracy
  • GAT, CCCN, and SCCNN also perform strongly, all above 89%
  • Most models perform above 84%, but UniGNN2 and AST are notably lower
  • GIN and GCN show consistent results with low standard deviation
Reproducibility
python -m topobench model=simplicial/scn dataset=graph/minesweeper optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.n_layers=3 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBench --multirun