NCI1

Graph Task Level: Graph

Description

NCI1

Dataset Overview

Lifting Methods

Structural-based Liftings
Feature Lifting
  • Projected sum

Model Performance

ModelAccuracy (%)Std Dev (±)
GCN72.860.69
GIN74.260.96
GAT75.000.99
AST75.181.24
EDGNN73.970.82
UniGNN273.020.92
CWN73.931.87
CCCN76.671.48
SCCNN76.601.75
SCN74.491.03

Key Insights

  • CCCN achieves the best performance with 76.67% accuracy
  • SCCNN is a close second with 76.60% accuracy
  • Most models perform in the 73–76% range
  • CWN shows the highest variability (±1.87)
  • GCN shows the most stable results with lowest std dev (±0.69)
Reproducibility
python -m topobench model=cell/cccn dataset=graph/NCI1 optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.n_layers=4 model.readout.readout_name=NoReadOut model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=128 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBench --multirun