PROTEINS

Graph Task Level: Graph

Description

PROTEINS

Dataset Overview

Lifting Methods

Structural-based Liftings
Feature Lifting
  • Projected sum

Model Performance

ModelAccuracy (%)Std Dev (±)
GCN75.702.14
GIN75.203.30
GAT76.341.66
AST76.631.74
EDGNN73.914.39
UniGNN275.202.96
CWN76.132.70
CCCN73.332.30
SCCNN74.192.86
SCN75.272.14

Key Insights

  • AST achieves the best performance with 76.63% accuracy
  • Most models perform in the 73-76% range, with GAT and CWN also above 76%
  • EDGNN shows the highest variability (±4.39)
  • GIN and UniGNN2 have identical mean accuracy (75.20%)
Reproducibility
python -m topobench model=hypergraph/allsettransformer dataset=graph/PROTEINS optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=32 model.backbone.n_layers=2 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=128 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBench --multirun