Reddit Binary

Graph Task Level: Graph

Description

REDDIT-BINARY

Dataset Overview

Lifting Methods

Structural-based Liftings
Feature Lifting
  • Projected sum

Model Performance

ModelAccuracy (%)Std Dev (±)
GCN76.240.54
GIN81.961.36
GAT75.681.00
AST74.842.68
EDGNN83.241.45
UniGNN275.563.19
CWN85.521.38
CCCN85.121.29
SCCNN77.241.87
SCN71.282.06

Key Insights

  • CWN achieves the best performance with 85.52% accuracy
  • CCCN is the second best with 85.12% accuracy
  • EDGNN also performs strongly with 83.24% accuracy
  • GIN and CCCN show relatively high variability (±1.36, ±1.29)
  • GCN and GAT have lower performance compared to other models
Reproducibility
python -m topobench model=cell/cwn dataset=graph/REDDIT-BINARY optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=32 model.backbone.n_layers=3 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=16 transforms.graph2cell_lifting.max_cell_length=10 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBench --multirun