Roman Empire

Graph Task Level: Graph

Description

Roman Empire

Dataset Overview

Lifting Methods

Structural-based Liftings
Feature Lifting
  • Projected sum

Model Performance

ModelAccuracy (%)Std Dev (±)
GCN78.160.32
GIN79.560.20
GAT84.020.51
AST79.500.13
EDGNN81.010.24
UniGNN277.060.20
CWN81.810.62
CCCN82.140.00
SCCNN89.150.32
SCN88.790.46

Key Insights

  • SCCNN achieves the best performance with 89.15% accuracy
  • SCN is the second best with 88.79% accuracy
  • GAT is the best among graph models with 84.02% accuracy
  • Most models perform in the 77-84% range, with SCCNN and SCN outperforming others by a significant margin
Reproducibility
python -m topobench model=simplicial/sccnn_custom dataset=graph/roman_empire optimizer.parameters.lr=0.01 model.feature_encoder.out_channels=64 model.backbone.n_layers=2 model.readout.readout_name=NoReadOut transforms.graph2simplicial_lifting.signed=True model.feature_encoder.proj_dropout=0.5 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBench --multirun