Tolokers

Graph Task Level: Graph

Description

Tolokers

Dataset Overview

Lifting Methods

Structural-based Liftings
Feature Lifting
  • Projected sum

Model Performance

ModelAccuracy (%)Std Dev (±)
GCN83.020.71
GIN80.721.19
GAT84.431.00
AST83.260.10
EDGNN77.530.01
UniGNN277.350.03
CWNOOMOOM
CCCNOOMOOM
SCCNNOOMOOM
SCNOOMOOM

Key Insights

  • GAT achieves the best performance with 84.43% accuracy
  • GCN and AST also perform well, with accuracies above 83%
  • GIN shows moderate variability (±1.19)
  • EDGNN and UniGNN2 have lower performance (below 78%)
  • CWN, CCCN, SCCNN, and SCN ran out of memory (OOM)
Reproducibility
python -m topobench model=graph/gat dataset=graph/tolokers optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=128 model.backbone.num_layers=4 model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=1 dataset.split_params.data_seed=0,3,5,7,9 trainer.max_epochs=1000 trainer.min_epochs=50 trainer.check_val_every_n_epoch=1 callbacks.early_stopping.patience=50 logger.wandb.project=TopoBench --multirun