ZINC

Graph Task Level: Graph

Description

ZINC

Dataset Overview

Lifting Methods

Structural-based Liftings
Feature Lifting
  • Projected sum

Model Performance

ModelAccuracy (MAE)Std Dev (±)
GCN0.620.01
GIN0.570.04
GAT0.610.01
AST0.590.02
EDGNN0.510.01
UniGNN20.600.01
CWN0.340.01
CCCN0.340.02
SCCNN0.360.02
SCN0.530.04

Key Insights

  • CWN and CCCN achieve the best performance with 0.34 accuracy
  • GCN achieves the highest accuracy among traditional GNNs (0.62)
  • Most models perform in the 0.5–0.6 range, with CWN and CCCN significantly outperforming others
  • GIN shows the highest variability (±0.04), while GCN and EDGNN are the most stable (±0.01)
Reproducibility
python -m topobench model=cell/cwn dataset=graph/ZINC optimizer.parameters.lr=0.001 model.feature_encoder.out_channels=64 model.backbone.n_layers=2 model.readout.readout_name=PropagateSignalDown model.feature_encoder.proj_dropout=0.25 dataset.dataloader_params.batch_size=128 transforms.graph2cell_lifting.max_cell_length=10 callbacks.early_stopping.min_delta=0.005 transforms.one_hot_node_degree_features.degrees_fields=x seed=42,3,5,23,150 trainer.max_epochs=500 trainer.min_epochs=50 trainer.check_val_every_n_epoch=5 callbacks.early_stopping.patience=10 logger.wandb.project=TopoBench --multirun