topobench.nn.backbones.graph package#
Submodules#
topobench.nn.backbones.graph.graph_mlp module#
Graph MLP backbone from yanghu819/Graph-MLP.
- class topobench.nn.backbones.graph.graph_mlp.GraphMLP(in_channels, hidden_channels, order=1, dropout=0.0, **kwargs)[source]#
Bases:
Module
“Graph MLP backbone.
- Parameters:
- in_channelsint
Number of input features.
- hidden_channelsint
Number of hidden units.
- orderint, optional
To compute order-th power of adj matrix (default: 1).
- dropoutfloat, optional
Dropout rate (default: 0.0).
- **kwargs
Additional arguments.
topobench.nn.backbones.graph.identity_gnn module#
This module contains the implementation of identity GNNs.
- class topobench.nn.backbones.graph.identity_gnn.IdentityGAT(in_channels, hidden_channels, out_channels, num_layers, norm, heads=1, dropout=0.0)[source]#
Bases:
Module
Graph Attention Network (GAT) with identity activation function.
- Parameters:
- in_channelsint
Number of input features.
- hidden_channelsint
Number of hidden units.
- out_channelsint
Number of output features.
- num_layersint
Number of layers.
- normtorch.nn.Module
Normalization layer.
- headsint, optional
Number of attention heads. Defaults to 1.
- dropoutfloat, optional
Dropout rate. Defaults to 0.0.
- class topobench.nn.backbones.graph.identity_gnn.IdentityGCN(in_channels, hidden_channels, out_channels, num_layers, norm, dropout=0.0)[source]#
Bases:
Module
Graph Convolutional Network (GCN) with identity activation function.
- Parameters:
- in_channelsint
Number of input features.
- hidden_channelsint
Number of hidden units.
- out_channelsint
Number of output features.
- num_layersint
Number of layers.
- normtorch.nn.Module
Normalization layer.
- dropoutfloat, optional
Dropout rate. Defaults to 0.0.
- class topobench.nn.backbones.graph.identity_gnn.IdentityGIN(in_channels, hidden_channels, out_channels, num_layers, norm, dropout=0.0)[source]#
Bases:
Module
Graph Isomorphism Network (GIN) with identity activation function.
- Parameters:
- in_channelsint
Number of input features.
- hidden_channelsint
Number of hidden units.
- out_channelsint
Number of output features.
- num_layersint
Number of layers.
- normtorch.nn.Module
Normalization layer.
- dropoutfloat, optional
Dropout rate. Defaults to 0.0.
- class topobench.nn.backbones.graph.identity_gnn.IdentitySAGE(in_channels, hidden_channels, out_channels, num_layers, norm, dropout=0.0)[source]#
Bases:
Module
GraphSAGE with identity activation function.
- Parameters:
- in_channelsint
Number of input features.
- hidden_channelsint
Number of hidden units.
- out_channelsint
Number of output features.
- num_layersint
Number of layers.
- normtorch.nn.Module
Normalization layer.
- dropoutfloat, optional
Dropout rate. Defaults to 0.0.
Module contents#
Graph backbones with automated exports.
- class topobench.nn.backbones.graph.GraphMLP(in_channels, hidden_channels, order=1, dropout=0.0, **kwargs)#
Bases:
Module
“Graph MLP backbone.
- Parameters:
- in_channelsint
Number of input features.
- hidden_channelsint
Number of hidden units.
- orderint, optional
To compute order-th power of adj matrix (default: 1).
- dropoutfloat, optional
Dropout rate (default: 0.0).
- **kwargs
Additional arguments.
- forward(x)#
Forward pass.
- Parameters:
- xtorch.Tensor
Input tensor.
- Returns:
- torch.Tensor
Output tensor.
- class topobench.nn.backbones.graph.IdentityGAT(in_channels, hidden_channels, out_channels, num_layers, norm, heads=1, dropout=0.0)#
Bases:
Module
Graph Attention Network (GAT) with identity activation function.
- Parameters:
- in_channelsint
Number of input features.
- hidden_channelsint
Number of hidden units.
- out_channelsint
Number of output features.
- num_layersint
Number of layers.
- normtorch.nn.Module
Normalization layer.
- headsint, optional
Number of attention heads. Defaults to 1.
- dropoutfloat, optional
Dropout rate. Defaults to 0.0.
- forward(x, edge_index)#
Forward pass.
- Parameters:
- xtorch.Tensor
Input node features.
- edge_indextorch.Tensor
Edge indices.
- Returns:
- torch.Tensor
Output node features.
- class topobench.nn.backbones.graph.IdentityGCN(in_channels, hidden_channels, out_channels, num_layers, norm, dropout=0.0)#
Bases:
Module
Graph Convolutional Network (GCN) with identity activation function.
- Parameters:
- in_channelsint
Number of input features.
- hidden_channelsint
Number of hidden units.
- out_channelsint
Number of output features.
- num_layersint
Number of layers.
- normtorch.nn.Module
Normalization layer.
- dropoutfloat, optional
Dropout rate. Defaults to 0.0.
- forward(x, edge_index)#
Forward pass.
- Parameters:
- xtorch.Tensor
Input node features.
- edge_indextorch.Tensor
Edge indices.
- Returns:
- torch.Tensor
Output node features.
- class topobench.nn.backbones.graph.IdentityGIN(in_channels, hidden_channels, out_channels, num_layers, norm, dropout=0.0)#
Bases:
Module
Graph Isomorphism Network (GIN) with identity activation function.
- Parameters:
- in_channelsint
Number of input features.
- hidden_channelsint
Number of hidden units.
- out_channelsint
Number of output features.
- num_layersint
Number of layers.
- normtorch.nn.Module
Normalization layer.
- dropoutfloat, optional
Dropout rate. Defaults to 0.0.
- forward(x, edge_index)#
Forward pass.
- Parameters:
- xtorch.Tensor
Input node features.
- edge_indextorch.Tensor
Edge indices.
- Returns:
- torch.Tensor
Output node features.
- class topobench.nn.backbones.graph.IdentitySAGE(in_channels, hidden_channels, out_channels, num_layers, norm, dropout=0.0)#
Bases:
Module
GraphSAGE with identity activation function.
- Parameters:
- in_channelsint
Number of input features.
- hidden_channelsint
Number of hidden units.
- out_channelsint
Number of output features.
- num_layersint
Number of layers.
- normtorch.nn.Module
Normalization layer.
- dropoutfloat, optional
Dropout rate. Defaults to 0.0.
- forward(x, edge_index)#
Forward pass.
- Parameters:
- xtorch.Tensor
Input node features.
- edge_indextorch.Tensor
Edge indices.
- Returns:
- torch.Tensor
Output node features.