topobench.nn.encoders package#
Init file for encoder module with automated encoder discovery.
- class AllCellFeatureEncoder(in_channels, out_channels, proj_dropout=0, selected_dimensions=None, **kwargs)#
Bases:
AbstractFeatureEncoderEncoder class to apply BaseEncoder.
The BaseEncoder is applied to the features of higher order structures. The class creates a BaseEncoder for each dimension specified in selected_dimensions. Then during the forward pass, the BaseEncoders are applied to the features of the corresponding dimensions.
- Parameters:
- in_channelslist[int]
Input dimensions for the features.
- out_channelslist[int]
Output dimensions for the features.
- proj_dropoutfloat, optional
Dropout for the BaseEncoders (default: 0).
- selected_dimensionslist[int], optional
List of indexes to apply the BaseEncoders to (default: None).
- **kwargsdict, optional
Additional keyword arguments.
- __init__(in_channels, out_channels, proj_dropout=0, selected_dimensions=None, **kwargs)#
Initialize internal Module state, shared by both nn.Module and ScriptModule.
- forward(data)#
Forward pass.
The method applies the BaseEncoders to the features of the selected_dimensions.
- Parameters:
- datatorch_geometric.data.Data
Input data object which should contain x_{i} features for each i in the selected_dimensions.
- Returns:
- torch_geometric.data.Data
Output data object with updated x_{i} features.
- class DGMStructureFeatureEncoder(in_channels, out_channels, proj_dropout=0, selected_dimensions=None, **kwargs)#
Bases:
AbstractFeatureEncoderEncoder class to apply BaseEncoder.
The BaseEncoder is applied to the features of higher order structures. The class creates a BaseEncoder for each dimension specified in selected_dimensions. Then during the forward pass, the BaseEncoders are applied to the features of the corresponding dimensions.
- Parameters:
- in_channelslist[int]
Input dimensions for the features.
- out_channelslist[int]
Output dimensions for the features.
- proj_dropoutfloat, optional
Dropout for the BaseEncoders (default: 0).
- selected_dimensionslist[int], optional
List of indexes to apply the BaseEncoders to (default: None).
- **kwargsdict, optional
Additional keyword arguments.
- __init__(in_channels, out_channels, proj_dropout=0, selected_dimensions=None, **kwargs)#
Initialize internal Module state, shared by both nn.Module and ScriptModule.
- forward(data)#
Forward pass.
The method applies the BaseEncoders to the features of the selected_dimensions.
- Parameters:
- datatorch_geometric.data.Data
Input data object which should contain x_{i} features for each i in the selected_dimensions.
- Returns:
- torch_geometric.data.Data
Output data object with updated x_{i} features.
- class FlatEncoder(in_channels, out_channels, **kwargs)#
Bases:
AbstractFeatureEncoderAbstract class to define a custom feature encoder.
- Parameters:
- in_channelsint
Number of input channels.
- out_channelsint
Number of output channels.
- **kwargs
Additional keyword arguments.
- __init__(in_channels, out_channels, **kwargs)#
Initialize internal Module state, shared by both nn.Module and ScriptModule.
- forward(data)#
Forward pass of the flat encoder.
- Parameters:
- datatorch_geometric.data.Data
Input data object which should contain x features.
- Returns:
- torch_geometric.data.Data
Output data object with flattened features.
Submodules#
- topobench.nn.encoders.all_cell_encoder module
- topobench.nn.encoders.base module
- topobench.nn.encoders.dgm_encoder module
- topobench.nn.encoders.flat_encoder module
- topobench.nn.encoders.kdgm module