topobench.data.datasets.us_county_demos_dataset module#

Dataset class for US County Demographics dataset.

class Data(x=None, edge_index=None, edge_attr=None, y=None, pos=None, time=None, **kwargs)#

Bases: BaseData, FeatureStore, GraphStore

A data object describing a homogeneous graph. The data object can hold node-level, link-level and graph-level attributes. In general, Data tries to mimic the behavior of a regular :python:`Python` dictionary. In addition, it provides useful functionality for analyzing graph structures, and provides basic PyTorch tensor functionalities. See here for the accompanying tutorial.

from torch_geometric.data import Data

data = Data(x=x, edge_index=edge_index, ...)

# Add additional arguments to `data`:
data.train_idx = torch.tensor([...], dtype=torch.long)
data.test_mask = torch.tensor([...], dtype=torch.bool)

# Analyzing the graph structure:
data.num_nodes
>>> 23

data.is_directed()
>>> False

# PyTorch tensor functionality:
data = data.pin_memory()
data = data.to('cuda:0', non_blocking=True)
Parameters:
  • x (torch.Tensor, optional) – Node feature matrix with shape [num_nodes, num_node_features]. (default: None)

  • edge_index (LongTensor, optional) – Graph connectivity in COO format with shape [2, num_edges]. (default: None)

  • edge_attr (torch.Tensor, optional) – Edge feature matrix with shape [num_edges, num_edge_features]. (default: None)

  • y (torch.Tensor, optional) – Graph-level or node-level ground-truth labels with arbitrary shape. (default: None)

  • pos (torch.Tensor, optional) – Node position matrix with shape [num_nodes, num_dimensions]. (default: None)

  • time (torch.Tensor, optional) – The timestamps for each event with shape [num_edges] or [num_nodes]. (default: None)

  • **kwargs (optional) – Additional attributes.

__init__(x=None, edge_index=None, edge_attr=None, y=None, pos=None, time=None, **kwargs)#
connected_components()#

Extracts connected components of the graph using a union-find algorithm. The components are returned as a list of Data objects, where each object represents a connected component of the graph.

data = Data()
data.x = torch.tensor([[1.0], [2.0], [3.0], [4.0]])
data.y = torch.tensor([[1.1], [2.1], [3.1], [4.1]])
data.edge_index = torch.tensor(
    [[0, 1, 2, 3], [1, 0, 3, 2]], dtype=torch.long
)

components = data.connected_components()
print(len(components))
>>> 2

print(components[0].x)
>>> Data(x=[2, 1], y=[2, 1], edge_index=[2, 2])
Returns:

A list of disconnected components.

Return type:

List[Data]

debug()#
edge_subgraph(subset)#

Returns the induced subgraph given by the edge indices subset. Will currently preserve all the nodes in the graph, even if they are isolated after subgraph computation.

Parameters:

subset (LongTensor or BoolTensor) – The edges to keep.

classmethod from_dict(mapping)#

Creates a Data object from a dictionary.

get_all_edge_attrs()#

Returns all registered edge attributes.

get_all_tensor_attrs()#

Obtains all feature attributes stored in Data.

is_edge_attr(key)#

Returns True if the object at key key denotes an edge-level tensor attribute.

is_node_attr(key)#

Returns True if the object at key key denotes a node-level tensor attribute.

stores_as(data)#
subgraph(subset)#

Returns the induced subgraph given by the node indices subset.

Parameters:

subset (LongTensor or BoolTensor) – The nodes to keep.

to_dict()#

Returns a dictionary of stored key/value pairs.

to_heterogeneous(node_type=None, edge_type=None, node_type_names=None, edge_type_names=None)#

Converts a Data object to a heterogeneous HeteroData object. For this, node and edge attributes are splitted according to the node-level and edge-level vectors node_type and edge_type, respectively. node_type_names and edge_type_names can be used to give meaningful node and edge type names, respectively. That is, the node_type 0 is given by node_type_names[0]. If the Data object was constructed via to_homogeneous(), the object can be reconstructed without any need to pass in additional arguments.

Parameters:
  • node_type (torch.Tensor, optional) – A node-level vector denoting the type of each node. (default: None)

  • edge_type (torch.Tensor, optional) – An edge-level vector denoting the type of each edge. (default: None)

  • node_type_names (List[str], optional) – The names of node types. (default: None)

  • edge_type_names (List[Tuple[str, str, str]], optional) – The names of edge types. (default: None)

to_namedtuple()#

Returns a NamedTuple of stored key/value pairs.

update(data)#

Updates the data object with the elements from another data object. Added elements will override existing ones (in case of duplicates).

validate(raise_on_error=True)#

Validates the correctness of the data.

property batch: Tensor | None#

!! processed by numpydoc !!

property edge_attr: Tensor | None#

!! processed by numpydoc !!

property edge_index: Tensor | None#

!! processed by numpydoc !!

property edge_stores: List[EdgeStorage]#

!! processed by numpydoc !!

property edge_weight: Tensor | None#

!! processed by numpydoc !!

property face: Tensor | None#

!! processed by numpydoc !!

property node_stores: List[NodeStorage]#

!! processed by numpydoc !!

property num_edge_features: int#

Returns the number of features per edge in the graph.

property num_edge_types: int#

Returns the number of edge types in the graph.

property num_faces: int | None#

Returns the number of faces in the mesh.

property num_features: int#

Returns the number of features per node in the graph. Alias for num_node_features.

property num_node_features: int#

Returns the number of features per node in the graph.

property num_node_types: int#

Returns the number of node types in the graph.

property num_nodes: int | None#

Returns the number of nodes in the graph.

Note

The number of nodes in the data object is automatically inferred in case node-level attributes are present, e.g., data.x. In some cases, however, a graph may only be given without any node-level attributes. :pyg:`PyG` then guesses the number of nodes according to edge_index.max().item() + 1. However, in case there exists isolated nodes, this number does not have to be correct which can result in unexpected behavior. Thus, we recommend to set the number of nodes in your data object explicitly via data.num_nodes = .... You will be given a warning that requests you to do so.

property pos: Tensor | None#

!! processed by numpydoc !!

property stores: List[BaseStorage]#

!! processed by numpydoc !!

property time: Tensor | None#

!! processed by numpydoc !!

property x: Tensor | None#

!! processed by numpydoc !!

property y: Tensor | int | float | None#

!! processed by numpydoc !!

class DictConfig(content, key=None, parent=None, ref_type=typing.Any, key_type=typing.Any, element_type=typing.Any, is_optional=True, flags=None)#

Bases: BaseContainer, MutableMapping[Any, Any]

__init__(content, key=None, parent=None, ref_type=typing.Any, key_type=typing.Any, element_type=typing.Any, is_optional=True, flags=None)#
copy()#
get(key, default_value=None)#

Return the value for key if key is in the dictionary, else default_value (defaulting to None).

items() a set-like object providing a view on D's items#
items_ex(resolve=True, keys=None)#
keys() a set-like object providing a view on D's keys#
pop(k[, d]) v, remove specified key and return the corresponding value.#

If key is not found, d is returned if given, otherwise KeyError is raised.

setdefault(k[, d]) D.get(k,d), also set D[k]=d if k not in D#
class InMemoryDataset(root=None, transform=None, pre_transform=None, pre_filter=None, log=True, force_reload=False)#

Bases: Dataset

Dataset base class for creating graph datasets which easily fit into CPU memory. See here for the accompanying tutorial.

Parameters:
  • root (str, optional) – Root directory where the dataset should be saved. (optional: None)

  • transform (callable, optional) – A function/transform that takes in a Data or HeteroData object and returns a transformed version. The data object will be transformed before every access. (default: None)

  • pre_transform (callable, optional) – A function/transform that takes in a Data or HeteroData object and returns a transformed version. The data object will be transformed before being saved to disk. (default: None)

  • pre_filter (callable, optional) – A function that takes in a Data or HeteroData object and returns a boolean value, indicating whether the data object should be included in the final dataset. (default: None)

  • log (bool, optional) – Whether to print any console output while downloading and processing the dataset. (default: True)

  • force_reload (bool, optional) – Whether to re-process the dataset. (default: False)

__init__(root=None, transform=None, pre_transform=None, pre_filter=None, log=True, force_reload=False)#
static collate(data_list)#

Collates a list of Data or HeteroData objects to the internal storage format of InMemoryDataset.

copy(idx=None)#

Performs a deep-copy of the dataset. If idx is not given, will clone the full dataset. Otherwise, will only clone a subset of the dataset from indices idx. Indices can be slices, lists, tuples, and a torch.Tensor or np.ndarray of type long or bool.

cpu(*args)#

Moves the dataset to CPU memory.

cuda(device=None)#

Moves the dataset toto CUDA memory.

get(idx)#

Gets the data object at index idx.

len()#

Returns the number of data objects stored in the dataset.

load(path, data_cls=<class 'torch_geometric.data.data.Data'>)#

Loads the dataset from the file path path.

classmethod save(data_list, path)#

Saves a list of data objects to the file path path.

to(device)#

Performs device conversion of the whole dataset.

to_on_disk_dataset(root=None, backend='sqlite', log=True)#

Converts the InMemoryDataset to a OnDiskDataset variant. Useful for distributed training and hardware instances with limited amount of shared memory.

root (str, optional): Root directory where the dataset should be saved.

If set to None, will save the dataset in root/on_disk. Note that it is important to specify root to account for different dataset splits. (optional: None)

backend (str): The Database backend to use.

(default: "sqlite")

log (bool, optional): Whether to print any console output while

processing the dataset. (default: True)

property data: Any#

!! processed by numpydoc !!

property num_classes: int#

Returns the number of classes in the dataset.

property processed_file_names: str | List[str] | Tuple[str, ...]#

The name of the files in the self.processed_dir folder that must be present in order to skip processing.

property raw_file_names: str | List[str] | Tuple[str, ...]#

The name of the files in the self.raw_dir folder that must be present in order to skip downloading.

class USCountyDemosDataset(root, name, parameters)#

Bases: InMemoryDataset

Dataset class for US County Demographics dataset.

Parameters:
rootstr

Root directory where the dataset will be saved.

namestr

Name of the dataset.

parametersDictConfig

Configuration parameters for the dataset.

Attributes:
URLS (dict): Dictionary containing the URLs for downloading the dataset.
FILE_FORMAT (dict): Dictionary containing the file formats for the dataset.
RAW_FILE_NAMES (dict): Dictionary containing the raw file names for the dataset.
__init__(root, name, parameters)#
download()#

Download the dataset from a URL and saves it to the raw directory.

Raises:

FileNotFoundError – If the dataset URL is not found.

process()#

Handle the data for the dataset.

This method loads the US county demographics data, applies any pre- processing transformations if specified, and saves the processed data to the appropriate location.

FILE_FORMAT: ClassVar = {'US-county-demos': 'zip'}#
RAW_FILE_NAMES: ClassVar = {}#
URLS: ClassVar = {'US-county-demos': 'https://drive.google.com/file/d/1FNF_LbByhYNICPNdT6tMaJI9FxuSvvLK/view?usp=sharing'}#
property processed_dir: str#

Return the path to the processed directory of the dataset.

Returns:
str

Path to the processed directory.

property processed_file_names: str#

Return the processed file name for the dataset.

Returns:
str

Processed file name.

property raw_dir: str#

Return the path to the raw directory of the dataset.

Returns:
str

Path to the raw directory.

property raw_file_names: list[str]#

Return the raw file names for the dataset.

Returns:
list[str]

List of raw file names.

download_file_from_drive(file_link, path_to_save, dataset_name, file_format='tar.gz')#

Download a file from a Google Drive link and saves it to the specified path.

Parameters:
file_linkstr

The Google Drive link of the file to download.

path_to_savestr

The path where the downloaded file will be saved.

dataset_namestr

The name of the dataset.

file_formatstr, optional

The format of the downloaded file. Defaults to “tar.gz”.

Raises:
None
extract_zip(path, folder, log=True)#

Extracts a zip archive to a specific folder.

Parameters:
  • path (str) – The path to the tar archive.

  • folder (str) – The folder.

  • log (bool, optional) – If False, will not print anything to the console. (default: True)

read_us_county_demos(path, year=2012, y_col='Election')#

Load US County Demos dataset.

Parameters:
pathstr

Path to the dataset.

yearint, optional

Year to load the features (default: 2012).

y_colstr, optional

Column to use as label. Can be one of [‘Election’, ‘MedianIncome’, ‘MigraRate’, ‘BirthRate’, ‘DeathRate’, ‘BachelorRate’, ‘UnemploymentRate’] (default: “Election”).

Returns:
torch_geometric.data.Data

Data object of the graph for the US County Demos dataset.