topobench.nn.backbones.graph.nsd module#
This module implements a Discrete Neural Sheaf Diffusion-based model[1] that can be used with the training framework.
Neural Sheaf Diffusion is a method for learning representations of graphs using sheaf structure: node and edge stalks communicating via transport maps / restriction maps. Adapted and simplified from Bodnar et al. [1]
[1] Bodnar et al. “Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs” https://arxiv.org/abs/2202.04579
- class InductiveDiscreteBundleSheafDiffusion(config)#
Bases:
SheafDiffusionInductive sheaf diffusion with orthogonal bundle restriction maps.
This model learns orthogonal d x d restriction maps for each edge, ensuring isometric transport between stalks. Uses normalized Laplacian and Cayley/matrix exponential parameterization for orthogonality.
- Parameters:
- configdict
Configuration dictionary containing: - d (int): Dimension of stalk space (must be > 1). - layers (int): Number of diffusion layers. - hidden_channels (int): Hidden channels per stalk dimension. - input_dim (int): Input feature dimension. - output_dim (int): Output feature dimension. - device (str): Device to run on. - input_dropout (float): Input layer dropout rate. - dropout (float): Hidden layer dropout rate. - sheaf_act (str): Activation for sheaf learning. - orth (str): Orthogonalization method (‘cayley’ or ‘matrix_exp’).
- Raises:
- AssertionError
If d is not greater than 1 or hidden_dim is not divisible by d.
- __init__(config)#
Initialize internal Module state, shared by both nn.Module and ScriptModule.
- forward(x, edge_index)#
Forward pass of bundle sheaf diffusion.
- Parameters:
- xtorch.Tensor
Node feature matrix of shape [num_nodes, input_dim].
- edge_indextorch.Tensor
Edge indices of shape [2, num_edges].
- Returns:
- torch.Tensor
Output node features of shape [num_nodes, output_dim].
- get_param_size()#
Get the number of parameters needed for orthogonal maps.
- Returns:
- int
Number of parameters (d*(d+1)/2 for lower triangular parameterization).
- left_right_linear(x, left, right, actual_num_nodes)#
Apply left and right linear transformations to stalk vectors.
- Parameters:
- xtorch.Tensor
Input tensor of shape [num_nodes * d, hidden_channels].
- leftnn.Linear
Left linear transformation (acts on stalk dimension).
- rightnn.Linear
Right linear transformation (acts on hidden channels).
- actual_num_nodesint
Number of nodes in the current graph.
- Returns:
- torch.Tensor
Transformed tensor of shape [num_nodes * d, hidden_channels].
- class InductiveDiscreteDiagSheafDiffusion(config)#
Bases:
SheafDiffusionInductive sheaf diffusion with diagonal restriction maps.
This model learns diagonal d x d restriction maps for each edge, parameterized by d scalar values. Suitable for problems where feature channels can be processed independently.
- Parameters:
- configdict
Configuration dictionary containing: - d (int): Dimension of stalk space (must be > 0). - layers (int): Number of diffusion layers. - hidden_channels (int): Hidden channels per stalk dimension. - input_dim (int): Input feature dimension. - output_dim (int): Output feature dimension. - device (str): Device to run on. - input_dropout (float): Input layer dropout rate. - dropout (float): Hidden layer dropout rate. - sheaf_act (str): Activation for sheaf learning.
- __init__(config)#
Initialize internal Module state, shared by both nn.Module and ScriptModule.
- forward(x, edge_index)#
Forward pass of diagonal sheaf diffusion.
- Parameters:
- xtorch.Tensor
Node feature matrix of shape [num_nodes, input_dim].
- edge_indextorch.Tensor
Edge indices of shape [2, num_edges].
- Returns:
- torch.Tensor
Output node features of shape [num_nodes, output_dim].
- class InductiveDiscreteGeneralSheafDiffusion(config)#
Bases:
SheafDiffusionInductive sheaf diffusion with general (unrestricted) restriction maps.
This model learns arbitrary d x d restriction maps for each edge, providing maximum expressiveness but requiring more parameters. Each restriction map is a full d x d matrix.
- Parameters:
- configdict
Configuration dictionary containing: - d (int): Dimension of stalk space (must be > 1). - layers (int): Number of diffusion layers. - hidden_channels (int): Hidden channels per stalk dimension. - input_dim (int): Input feature dimension. - output_dim (int): Output feature dimension. - device (str): Device to run on. - input_dropout (float): Input layer dropout rate. - dropout (float): Hidden layer dropout rate. - sheaf_act (str): Activation for sheaf learning.
- Raises:
- AssertionError
If d is not greater than 1.
- __init__(config)#
Initialize internal Module state, shared by both nn.Module and ScriptModule.
- forward(x, edge_index)#
Forward pass of general sheaf diffusion.
- Parameters:
- xtorch.Tensor
Node feature matrix of shape [num_nodes, input_dim].
- edge_indextorch.Tensor
Edge indices of shape [2, num_edges].
- Returns:
- torch.Tensor
Output node features of shape [num_nodes, output_dim].
- left_right_linear(x, left, right, actual_num_nodes)#
Apply left and right linear transformations to stalk vectors.
- Parameters:
- xtorch.Tensor
Input tensor of shape [num_nodes * d, hidden_channels].
- leftnn.Linear
Left linear transformation (acts on stalk dimension).
- rightnn.Linear
Right linear transformation (acts on hidden channels).
- actual_num_nodesint
Number of nodes in the current graph.
- Returns:
- torch.Tensor
Transformed tensor of shape [num_nodes * d, hidden_channels].
- class Module(*args, **kwargs)#
Bases:
objectBase class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will have their parameters converted too when you call
to(), etc.Note
As per the example above, an
__init__()call to the parent class must be made before assignment on the child.- Variables:
training (bool) – Boolean represents whether this module is in training or evaluation mode.
- __init__(*args, **kwargs)#
Initialize internal Module state, shared by both nn.Module and ScriptModule.
- add_module(name, module)#
Add a child module to the current module.
The module can be accessed as an attribute using the given name.
- apply(fn)#
Apply
fnrecursively to every submodule (as returned by.children()) as well as self.Typical use includes initializing the parameters of a model (see also nn-init-doc).
- Parameters:
fn (
Module-> None) – function to be applied to each submodule- Returns:
self
- Return type:
Example:
>>> @torch.no_grad() >>> def init_weights(m): >>> print(m) >>> if type(m) == nn.Linear: >>> m.weight.fill_(1.0) >>> print(m.weight) >>> net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2)) >>> net.apply(init_weights) Linear(in_features=2, out_features=2, bias=True) Parameter containing: tensor([[1., 1.], [1., 1.]], requires_grad=True) Linear(in_features=2, out_features=2, bias=True) Parameter containing: tensor([[1., 1.], [1., 1.]], requires_grad=True) Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) )
- bfloat16()#
Casts all floating point parameters and buffers to
bfloat16datatype.Note
This method modifies the module in-place.
- Returns:
self
- Return type:
- buffers(recurse=True)#
Return an iterator over module buffers.
- Parameters:
recurse (bool) – if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module.
- Yields:
torch.Tensor – module buffer
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> for buf in model.buffers(): >>> print(type(buf), buf.size()) <class 'torch.Tensor'> (20L,) <class 'torch.Tensor'> (20L, 1L, 5L, 5L)
- children()#
Return an iterator over immediate children modules.
- Yields:
Module – a child module
- compile(*args, **kwargs)#
Compile this Module’s forward using
torch.compile().This Module’s __call__ method is compiled and all arguments are passed as-is to
torch.compile().See
torch.compile()for details on the arguments for this function.
- cpu()#
Move all model parameters and buffers to the CPU.
Note
This method modifies the module in-place.
- Returns:
self
- Return type:
- cuda(device=None)#
Move all model parameters and buffers to the GPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on GPU while being optimized.
Note
This method modifies the module in-place.
- double()#
Casts all floating point parameters and buffers to
doubledatatype.Note
This method modifies the module in-place.
- Returns:
self
- Return type:
- eval()#
Set the module in evaluation mode.
This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g.
Dropout,BatchNorm, etc.This is equivalent with
self.train(False).See locally-disable-grad-doc for a comparison between .eval() and several similar mechanisms that may be confused with it.
- Returns:
self
- Return type:
- extra_repr()#
Set the extra representation of the module.
To print customized extra information, you should re-implement this method in your own modules. Both single-line and multi-line strings are acceptable.
- float()#
Casts all floating point parameters and buffers to
floatdatatype.Note
This method modifies the module in-place.
- Returns:
self
- Return type:
- forward(*input)#
Define the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- get_buffer(target)#
Return the buffer given by
targetif it exists, otherwise throw an error.See the docstring for
get_submodulefor a more detailed explanation of this method’s functionality as well as how to correctly specifytarget.- Parameters:
target (str) – The fully-qualified string name of the buffer to look for. (See
get_submodulefor how to specify a fully-qualified string.)- Returns:
The buffer referenced by
target- Return type:
torch.Tensor
- Raises:
AttributeError – If the target string references an invalid path or resolves to something that is not a buffer
- get_extra_state()#
Return any extra state to include in the module’s state_dict.
Implement this and a corresponding
set_extra_state()for your module if you need to store extra state. This function is called when building the module’s state_dict().Note that extra state should be picklable to ensure working serialization of the state_dict. We only provide provide backwards compatibility guarantees for serializing Tensors; other objects may break backwards compatibility if their serialized pickled form changes.
- Returns:
Any extra state to store in the module’s state_dict
- Return type:
- get_parameter(target)#
Return the parameter given by
targetif it exists, otherwise throw an error.See the docstring for
get_submodulefor a more detailed explanation of this method’s functionality as well as how to correctly specifytarget.- Parameters:
target (str) – The fully-qualified string name of the Parameter to look for. (See
get_submodulefor how to specify a fully-qualified string.)- Returns:
The Parameter referenced by
target- Return type:
torch.nn.Parameter
- Raises:
AttributeError – If the target string references an invalid path or resolves to something that is not an
nn.Parameter
- get_submodule(target)#
Return the submodule given by
targetif it exists, otherwise throw an error.For example, let’s say you have an
nn.ModuleAthat looks like this:A( (net_b): Module( (net_c): Module( (conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2)) ) (linear): Linear(in_features=100, out_features=200, bias=True) ) )(The diagram shows an
nn.ModuleA.Ahas a nested submodulenet_b, which itself has two submodulesnet_candlinear.net_cthen has a submoduleconv.)To check whether or not we have the
linearsubmodule, we would callget_submodule("net_b.linear"). To check whether we have theconvsubmodule, we would callget_submodule("net_b.net_c.conv").The runtime of
get_submoduleis bounded by the degree of module nesting intarget. A query againstnamed_modulesachieves the same result, but it is O(N) in the number of transitive modules. So, for a simple check to see if some submodule exists,get_submoduleshould always be used.- Parameters:
target (str) – The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)
- Returns:
The submodule referenced by
target- Return type:
torch.nn.Module
- Raises:
AttributeError – If the target string references an invalid path or resolves to something that is not an
nn.Module
- half()#
Casts all floating point parameters and buffers to
halfdatatype.Note
This method modifies the module in-place.
- Returns:
self
- Return type:
- ipu(device=None)#
Move all model parameters and buffers to the IPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on IPU while being optimized.
Note
This method modifies the module in-place.
- load_state_dict(state_dict, strict=True, assign=False)#
Copy parameters and buffers from
state_dictinto this module and its descendants.If
strictisTrue, then the keys ofstate_dictmust exactly match the keys returned by this module’sstate_dict()function.Warning
If
assignisTruethe optimizer must be created after the call toload_state_dictunlessget_swap_module_params_on_conversion()isTrue.- Parameters:
state_dict (dict) – a dict containing parameters and persistent buffers.
strict (bool, optional) – whether to strictly enforce that the keys in
state_dictmatch the keys returned by this module’sstate_dict()function. Default:Trueassign (bool, optional) – When
False, the properties of the tensors in the current module are preserved while whenTrue, the properties of the Tensors in the state dict are preserved. The only exception is therequires_gradfield ofDefault: ``False`
- Returns:
missing_keys is a list of str containing the missing keys
unexpected_keys is a list of str containing the unexpected keys
- Return type:
NamedTuplewithmissing_keysandunexpected_keysfields
Note
If a parameter or buffer is registered as
Noneand its corresponding key exists instate_dict,load_state_dict()will raise aRuntimeError.
- modules()#
Return an iterator over all modules in the network.
- Yields:
Module – a module in the network
Note
Duplicate modules are returned only once. In the following example,
lwill be returned only once.Example:
>>> l = nn.Linear(2, 2) >>> net = nn.Sequential(l, l) >>> for idx, m in enumerate(net.modules()): ... print(idx, '->', m) 0 -> Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) ) 1 -> Linear(in_features=2, out_features=2, bias=True)
- named_buffers(prefix='', recurse=True, remove_duplicate=True)#
Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
- Parameters:
prefix (str) – prefix to prepend to all buffer names.
recurse (bool, optional) – if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module. Defaults to True.
remove_duplicate (bool, optional) – whether to remove the duplicated buffers in the result. Defaults to True.
- Yields:
(str, torch.Tensor) – Tuple containing the name and buffer
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> for name, buf in self.named_buffers(): >>> if name in ['running_var']: >>> print(buf.size())
- named_children()#
Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
- Yields:
(str, Module) – Tuple containing a name and child module
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> for name, module in model.named_children(): >>> if name in ['conv4', 'conv5']: >>> print(module)
- named_modules(memo=None, prefix='', remove_duplicate=True)#
Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
- Parameters:
- Yields:
(str, Module) – Tuple of name and module
Note
Duplicate modules are returned only once. In the following example,
lwill be returned only once.Example:
>>> l = nn.Linear(2, 2) >>> net = nn.Sequential(l, l) >>> for idx, m in enumerate(net.named_modules()): ... print(idx, '->', m) 0 -> ('', Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) )) 1 -> ('0', Linear(in_features=2, out_features=2, bias=True))
- named_parameters(prefix='', recurse=True, remove_duplicate=True)#
Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
- Parameters:
prefix (str) – prefix to prepend to all parameter names.
recurse (bool) – if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.
remove_duplicate (bool, optional) – whether to remove the duplicated parameters in the result. Defaults to True.
- Yields:
(str, Parameter) – Tuple containing the name and parameter
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> for name, param in self.named_parameters(): >>> if name in ['bias']: >>> print(param.size())
- parameters(recurse=True)#
Return an iterator over module parameters.
This is typically passed to an optimizer.
- Parameters:
recurse (bool) – if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.
- Yields:
Parameter – module parameter
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> for param in model.parameters(): >>> print(type(param), param.size()) <class 'torch.Tensor'> (20L,) <class 'torch.Tensor'> (20L, 1L, 5L, 5L)
- register_backward_hook(hook)#
Register a backward hook on the module.
This function is deprecated in favor of
register_full_backward_hook()and the behavior of this function will change in future versions.- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()- Return type:
torch.utils.hooks.RemovableHandle
- register_buffer(name, tensor, persistent=True)#
Add a buffer to the module.
This is typically used to register a buffer that should not to be considered a model parameter. For example, BatchNorm’s
running_meanis not a parameter, but is part of the module’s state. Buffers, by default, are persistent and will be saved alongside parameters. This behavior can be changed by settingpersistenttoFalse. The only difference between a persistent buffer and a non-persistent buffer is that the latter will not be a part of this module’sstate_dict.Buffers can be accessed as attributes using given names.
- Parameters:
name (str) – name of the buffer. The buffer can be accessed from this module using the given name
tensor (Tensor or None) – buffer to be registered. If
None, then operations that run on buffers, such ascuda, are ignored. IfNone, the buffer is not included in the module’sstate_dict.persistent (bool) – whether the buffer is part of this module’s
state_dict.
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> self.register_buffer('running_mean', torch.zeros(num_features))
- register_forward_hook(hook, *, prepend=False, with_kwargs=False, always_call=False)#
Register a forward hook on the module.
The hook will be called every time after
forward()has computed an output.If
with_kwargsisFalseor not specified, the input contains only the positional arguments given to the module. Keyword arguments won’t be passed to the hooks and only to theforward. The hook can modify the output. It can modify the input inplace but it will not have effect on forward since this is called afterforward()is called. The hook should have the following signature:hook(module, args, output) -> None or modified output
If
with_kwargsisTrue, the forward hook will be passed thekwargsgiven to the forward function and be expected to return the output possibly modified. The hook should have the following signature:hook(module, args, kwargs, output) -> None or modified output
- Parameters:
hook (Callable) – The user defined hook to be registered.
prepend (bool) – If
True, the providedhookwill be fired before all existingforwardhooks on thistorch.nn.modules.Module. Otherwise, the providedhookwill be fired after all existingforwardhooks on thistorch.nn.modules.Module. Note that globalforwardhooks registered withregister_module_forward_hook()will fire before all hooks registered by this method. Default:Falsewith_kwargs (bool) – If
True, thehookwill be passed the kwargs given to the forward function. Default:Falsealways_call (bool) – If
Truethehookwill be run regardless of whether an exception is raised while calling the Module. Default:False
- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()- Return type:
torch.utils.hooks.RemovableHandle
- register_forward_pre_hook(hook, *, prepend=False, with_kwargs=False)#
Register a forward pre-hook on the module.
The hook will be called every time before
forward()is invoked.If
with_kwargsis false or not specified, the input contains only the positional arguments given to the module. Keyword arguments won’t be passed to the hooks and only to theforward. The hook can modify the input. User can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if a single value is returned (unless that value is already a tuple). The hook should have the following signature:hook(module, args) -> None or modified input
If
with_kwargsis true, the forward pre-hook will be passed the kwargs given to the forward function. And if the hook modifies the input, both the args and kwargs should be returned. The hook should have the following signature:hook(module, args, kwargs) -> None or a tuple of modified input and kwargs
- Parameters:
hook (Callable) – The user defined hook to be registered.
prepend (bool) – If true, the provided
hookwill be fired before all existingforward_prehooks on thistorch.nn.modules.Module. Otherwise, the providedhookwill be fired after all existingforward_prehooks on thistorch.nn.modules.Module. Note that globalforward_prehooks registered withregister_module_forward_pre_hook()will fire before all hooks registered by this method. Default:Falsewith_kwargs (bool) – If true, the
hookwill be passed the kwargs given to the forward function. Default:False
- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()- Return type:
torch.utils.hooks.RemovableHandle
- register_full_backward_hook(hook, prepend=False)#
Register a backward hook on the module.
The hook will be called every time the gradients with respect to a module are computed, i.e. the hook will execute if and only if the gradients with respect to module outputs are computed. The hook should have the following signature:
hook(module, grad_input, grad_output) -> tuple(Tensor) or None
The
grad_inputandgrad_outputare tuples that contain the gradients with respect to the inputs and outputs respectively. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the input that will be used in place ofgrad_inputin subsequent computations.grad_inputwill only correspond to the inputs given as positional arguments and all kwarg arguments are ignored. Entries ingrad_inputandgrad_outputwill beNonefor all non-Tensor arguments.For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module’s forward function.
Warning
Modifying inputs or outputs inplace is not allowed when using backward hooks and will raise an error.
- Parameters:
hook (Callable) – The user-defined hook to be registered.
prepend (bool) – If true, the provided
hookwill be fired before all existingbackwardhooks on thistorch.nn.modules.Module. Otherwise, the providedhookwill be fired after all existingbackwardhooks on thistorch.nn.modules.Module. Note that globalbackwardhooks registered withregister_module_full_backward_hook()will fire before all hooks registered by this method.
- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()- Return type:
torch.utils.hooks.RemovableHandle
- register_full_backward_pre_hook(hook, prepend=False)#
Register a backward pre-hook on the module.
The hook will be called every time the gradients for the module are computed. The hook should have the following signature:
hook(module, grad_output) -> tuple[Tensor] or None
The
grad_outputis a tuple. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the output that will be used in place ofgrad_outputin subsequent computations. Entries ingrad_outputwill beNonefor all non-Tensor arguments.For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module’s forward function.
Warning
Modifying inputs inplace is not allowed when using backward hooks and will raise an error.
- Parameters:
hook (Callable) – The user-defined hook to be registered.
prepend (bool) – If true, the provided
hookwill be fired before all existingbackward_prehooks on thistorch.nn.modules.Module. Otherwise, the providedhookwill be fired after all existingbackward_prehooks on thistorch.nn.modules.Module. Note that globalbackward_prehooks registered withregister_module_full_backward_pre_hook()will fire before all hooks registered by this method.
- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()- Return type:
torch.utils.hooks.RemovableHandle
- register_load_state_dict_post_hook(hook)#
Register a post hook to be run after module’s
load_state_dictis called.- It should have the following signature::
hook(module, incompatible_keys) -> None
The
moduleargument is the current module that this hook is registered on, and theincompatible_keysargument is aNamedTupleconsisting of attributesmissing_keysandunexpected_keys.missing_keysis alistofstrcontaining the missing keys andunexpected_keysis alistofstrcontaining the unexpected keys.The given incompatible_keys can be modified inplace if needed.
Note that the checks performed when calling
load_state_dict()withstrict=Trueare affected by modifications the hook makes tomissing_keysorunexpected_keys, as expected. Additions to either set of keys will result in an error being thrown whenstrict=True, and clearing out both missing and unexpected keys will avoid an error.- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()- Return type:
torch.utils.hooks.RemovableHandle
- register_module(name, module)#
Alias for
add_module().
- register_parameter(name, param)#
Add a parameter to the module.
The parameter can be accessed as an attribute using given name.
- Parameters:
name (str) – name of the parameter. The parameter can be accessed from this module using the given name
param (Parameter or None) – parameter to be added to the module. If
None, then operations that run on parameters, such ascuda, are ignored. IfNone, the parameter is not included in the module’sstate_dict.
- register_state_dict_pre_hook(hook)#
Register a pre-hook for the
state_dict()method.These hooks will be called with arguments:
self,prefix, andkeep_varsbefore callingstate_dictonself. The registered hooks can be used to perform pre-processing before thestate_dictcall is made.
- requires_grad_(requires_grad=True)#
Change if autograd should record operations on parameters in this module.
This method sets the parameters’
requires_gradattributes in-place.This method is helpful for freezing part of the module for finetuning or training parts of a model individually (e.g., GAN training).
See locally-disable-grad-doc for a comparison between .requires_grad_() and several similar mechanisms that may be confused with it.
- set_extra_state(state)#
Set extra state contained in the loaded state_dict.
This function is called from
load_state_dict()to handle any extra state found within the state_dict. Implement this function and a correspondingget_extra_state()for your module if you need to store extra state within its state_dict.- Parameters:
state (dict) – Extra state from the state_dict
See
torch.Tensor.share_memory_().
- state_dict(*, destination: T_destination, prefix: str = '', keep_vars: bool = False) T_destination#
- state_dict(*, prefix: str = '', keep_vars: bool = False) Dict[str, Any]
Return a dictionary containing references to the whole state of the module.
Both parameters and persistent buffers (e.g. running averages) are included. Keys are corresponding parameter and buffer names. Parameters and buffers set to
Noneare not included.Note
The returned object is a shallow copy. It contains references to the module’s parameters and buffers.
Warning
Currently
state_dict()also accepts positional arguments fordestination,prefixandkeep_varsin order. However, this is being deprecated and keyword arguments will be enforced in future releases.Warning
Please avoid the use of argument
destinationas it is not designed for end-users.- Parameters:
destination (dict, optional) – If provided, the state of module will be updated into the dict and the same object is returned. Otherwise, an
OrderedDictwill be created and returned. Default:None.prefix (str, optional) – a prefix added to parameter and buffer names to compose the keys in state_dict. Default:
''.keep_vars (bool, optional) – by default the
Tensors returned in the state dict are detached from autograd. If it’s set toTrue, detaching will not be performed. Default:False.
- Returns:
a dictionary containing a whole state of the module
- Return type:
Example:
>>> # xdoctest: +SKIP("undefined vars") >>> module.state_dict().keys() ['bias', 'weight']
- to(device: str | device | int | None = ..., dtype: dtype | None = ..., non_blocking: bool = ...) Self#
- to(dtype: dtype, non_blocking: bool = ...) Self
- to(tensor: Tensor, non_blocking: bool = ...) Self
Move and/or cast the parameters and buffers.
This can be called as
- to(device=None, dtype=None, non_blocking=False)
- to(dtype, non_blocking=False)
- to(tensor, non_blocking=False)
- to(memory_format=torch.channels_last)
Its signature is similar to
torch.Tensor.to(), but only accepts floating point or complexdtypes. In addition, this method will only cast the floating point or complex parameters and buffers todtype(if given). The integral parameters and buffers will be moveddevice, if that is given, but with dtypes unchanged. Whennon_blockingis set, it tries to convert/move asynchronously with respect to the host if possible, e.g., moving CPU Tensors with pinned memory to CUDA devices.See below for examples.
Note
This method modifies the module in-place.
- Parameters:
device (
torch.device) – the desired device of the parameters and buffers in this moduledtype (
torch.dtype) – the desired floating point or complex dtype of the parameters and buffers in this moduletensor (torch.Tensor) – Tensor whose dtype and device are the desired dtype and device for all parameters and buffers in this module
memory_format (
torch.memory_format) – the desired memory format for 4D parameters and buffers in this module (keyword only argument)
- Returns:
self
- Return type:
Examples:
>>> # xdoctest: +IGNORE_WANT("non-deterministic") >>> linear = nn.Linear(2, 2) >>> linear.weight Parameter containing: tensor([[ 0.1913, -0.3420], [-0.5113, -0.2325]]) >>> linear.to(torch.double) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1913, -0.3420], [-0.5113, -0.2325]], dtype=torch.float64) >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA1) >>> gpu1 = torch.device("cuda:1") >>> linear.to(gpu1, dtype=torch.half, non_blocking=True) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1914, -0.3420], [-0.5112, -0.2324]], dtype=torch.float16, device='cuda:1') >>> cpu = torch.device("cpu") >>> linear.to(cpu) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1914, -0.3420], [-0.5112, -0.2324]], dtype=torch.float16) >>> linear = nn.Linear(2, 2, bias=None).to(torch.cdouble) >>> linear.weight Parameter containing: tensor([[ 0.3741+0.j, 0.2382+0.j], [ 0.5593+0.j, -0.4443+0.j]], dtype=torch.complex128) >>> linear(torch.ones(3, 2, dtype=torch.cdouble)) tensor([[0.6122+0.j, 0.1150+0.j], [0.6122+0.j, 0.1150+0.j], [0.6122+0.j, 0.1150+0.j]], dtype=torch.complex128)
- to_empty(*, device, recurse=True)#
Move the parameters and buffers to the specified device without copying storage.
- train(mode=True)#
Set the module in training mode.
This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g.
Dropout,BatchNorm, etc.
- type(dst_type)#
Casts all parameters and buffers to
dst_type.Note
This method modifies the module in-place.
- xpu(device=None)#
Move all model parameters and buffers to the XPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on XPU while being optimized.
Note
This method modifies the module in-place.
- zero_grad(set_to_none=True)#
Reset gradients of all model parameters.
See similar function under
torch.optim.Optimizerfor more context.- Parameters:
set_to_none (bool) – instead of setting to zero, set the grads to None. See
torch.optim.Optimizer.zero_grad()for details.
- T_destination = ~T_destination#
- class NSDEncoder(input_dim, hidden_dim, num_layers=2, sheaf_type='diag', d=2, dropout=0.1, input_dropout=0.1, device='cpu', sheaf_act='tanh', orth='cayley', **kwargs)#
Bases:
ModuleNeural Sheaf Diffusion Encoder that can be used with the training framework.
This encoder learns representations using sheaf structure with node and edge stalks communicating via transport maps / restriction maps. Supports three types of sheaf structures: diagonal, bundle, and general.
- Parameters:
- input_dimint
Dimension of input node features.
- hidden_dimint
Dimension of hidden layers. Must be divisible by d.
- num_layersint, optional
Number of sheaf diffusion layers. Default is 2.
- sheaf_typestr, optional
Type of sheaf structure. Options are ‘diag’, ‘bundle’, or ‘general’. Default is ‘diag’.
- dint, optional
Dimension of the stalk space. For ‘diag’, d >= 1. For ‘bundle’ and ‘general’, d > 1. Default is 2.
- dropoutfloat, optional
Dropout rate for hidden layers. Default is 0.1.
- input_dropoutfloat, optional
Dropout rate for input layer. Default is 0.1.
- devicestr, optional
Device to run the model on (‘cpu’ or ‘cuda’). Default is ‘cpu’.
- sheaf_actstr, optional
Activation function for sheaf learning. Options are ‘tanh’, ‘elu’, ‘id’. Default is ‘tanh’.
- orthstr, optional
Orthogonalization method for bundle sheaf type. Options are ‘cayley’ or ‘matrix_exp’. Default is ‘cayley’.
- **kwargsdict
Additional keyword arguments (not used).
- __init__(input_dim, hidden_dim, num_layers=2, sheaf_type='diag', d=2, dropout=0.1, input_dropout=0.1, device='cpu', sheaf_act='tanh', orth='cayley', **kwargs)#
Initialize internal Module state, shared by both nn.Module and ScriptModule.
- forward(x, edge_index, edge_attr=None, edge_weight=None, batch=None, **kwargs)#
Forward pass of Neural Sheaf Diffusion encoder.
- Parameters:
- xtorch.Tensor
Node feature matrix of shape [num_nodes, input_dim].
- edge_indextorch.Tensor
Edge indices of shape [2, num_edges]. Will be automatically converted to undirected.
- edge_attrtorch.Tensor, optional
Edge feature matrix (not used). Default is None.
- edge_weighttorch.Tensor, optional
Edge weights (not used). Default is None.
- batchtorch.Tensor, optional
Batch vector assigning each node to a specific graph (not used). Default is None.
- **kwargsdict
Additional arguments (not used).
- Returns:
- torch.Tensor
Output node feature matrix of shape [num_nodes, hidden_dim].
- get_sheaf_model()#
Get the underlying sheaf model.
- Returns:
- SheafDiffusion
The sheaf diffusion model instance.
- to_undirected(edge_index, edge_attr='???', num_nodes=None, reduce='add')#
Converts the graph given by
edge_indexto an undirected graph such that \((j,i) \in \mathcal{E}\) for every edge \((i,j) \in \mathcal{E}\).- Parameters:
edge_index (LongTensor) – The edge indices.
edge_attr (Tensor or List[Tensor], optional) – Edge weights or multi- dimensional edge features. If given as a list, will remove duplicates for all its entries. (default:
None)num_nodes (int, optional) – The number of nodes, i.e.
max(edge_index) + 1. (default:None)reduce (str, optional) – The reduce operation to use for merging edge features (
"add","mean","min","max","mul"). (default:"add")
- Return type:
LongTensorifedge_attris not passed, else (LongTensor,Optional[Tensor]orList[Tensor]])
Warning
From :pyg:`PyG >= 2.3.0` onwards, this function will always return a tuple whenever
edge_attris passed as an argument (even in case it is set toNone).Examples
>>> edge_index = torch.tensor([[0, 1, 1], ... [1, 0, 2]]) >>> to_undirected(edge_index) tensor([[0, 1, 1, 2], [1, 0, 2, 1]])
>>> edge_index = torch.tensor([[0, 1, 1], ... [1, 0, 2]]) >>> edge_weight = torch.tensor([1., 1., 1.]) >>> to_undirected(edge_index, edge_weight) (tensor([[0, 1, 1, 2], [1, 0, 2, 1]]), tensor([2., 2., 1., 1.]))
>>> # Use 'mean' operation to merge edge features >>> to_undirected(edge_index, edge_weight, reduce='mean') (tensor([[0, 1, 1, 2], [1, 0, 2, 1]]), tensor([1., 1., 1., 1.]))