topobench.optimizer.optimizer module#
Optimizer class responsible of managing both optimizer and scheduler.
- class AbstractOptimizer#
Bases:
ABCAbstract class for the optimizer manager class.
- abstract configure_optimizer(model_parameters)#
Configure the optimizer and scheduler.
Act as a wrapper.
- Parameters:
- model_parametersdict
The model parameters.
- class Any(*args, **kwargs)#
Bases:
objectSpecial type indicating an unconstrained type.
Any is compatible with every type.
Any assumed to have all methods.
All values assumed to be instances of Any.
Note that all the above statements are true from the point of view of static type checkers. At runtime, Any should not be used with instance checks.
- class TBOptimizer(optimizer_id, parameters, scheduler=None)#
Bases:
AbstractOptimizerOptimizer class that manage both optimizer and scheduler, fully compatible with torch.optim classes.
- Parameters:
- optimizer_idstr
Name of the torch optimizer class to be used.
- parametersdict
Parameters to be passed to the optimizer.
- schedulerdict, optional
Scheduler id and parameters to be used. Default is None.
- __init__(optimizer_id, parameters, scheduler=None)#
- configure_optimizer(model_parameters)#
Configure the optimizer and scheduler.
Act as a wrapper to provide the LightningTrainer module the required config dict when it calls TBModel’s configure_optimizers() method.
- Parameters:
- model_parametersdict
The model parameters.
- Returns:
- dict
The optimizer and scheduler configuration.