topobench.transforms.data_manipulations.laplacian_encodings module#
Laplacian Positional Encoding (LapPE) Transform.
- class BaseTransform#
Bases:
ABCAn abstract base class for writing transforms.
Transforms are a general way to modify and customize
DataorHeteroDataobjects, either by implicitly passing them as an argument to aDataset, or by applying them explicitly to individualDataorHeteroDataobjects:import torch_geometric.transforms as T from torch_geometric.datasets import TUDataset transform = T.Compose([T.ToUndirected(), T.AddSelfLoops()]) dataset = TUDataset(path, name='MUTAG', transform=transform) data = dataset[0] # Implicitly transform data on every access. data = TUDataset(path, name='MUTAG')[0] data = transform(data) # Explicitly transform data.
- abstract forward(data)#
- class Data(x=None, edge_index=None, edge_attr=None, y=None, pos=None, time=None, **kwargs)#
Bases:
BaseData,FeatureStore,GraphStoreA data object describing a homogeneous graph. The data object can hold node-level, link-level and graph-level attributes. In general,
Datatries to mimic the behavior of a regular :python:`Python` dictionary. In addition, it provides useful functionality for analyzing graph structures, and provides basic PyTorch tensor functionalities. See here for the accompanying tutorial.from torch_geometric.data import Data data = Data(x=x, edge_index=edge_index, ...) # Add additional arguments to `data`: data.train_idx = torch.tensor([...], dtype=torch.long) data.test_mask = torch.tensor([...], dtype=torch.bool) # Analyzing the graph structure: data.num_nodes >>> 23 data.is_directed() >>> False # PyTorch tensor functionality: data = data.pin_memory() data = data.to('cuda:0', non_blocking=True)
- Parameters:
x (torch.Tensor, optional) – Node feature matrix with shape
[num_nodes, num_node_features]. (default:None)edge_index (LongTensor, optional) – Graph connectivity in COO format with shape
[2, num_edges]. (default:None)edge_attr (torch.Tensor, optional) – Edge feature matrix with shape
[num_edges, num_edge_features]. (default:None)y (torch.Tensor, optional) – Graph-level or node-level ground-truth labels with arbitrary shape. (default:
None)pos (torch.Tensor, optional) – Node position matrix with shape
[num_nodes, num_dimensions]. (default:None)time (torch.Tensor, optional) – The timestamps for each event with shape
[num_edges]or[num_nodes]. (default:None)**kwargs (optional) – Additional attributes.
- __init__(x=None, edge_index=None, edge_attr=None, y=None, pos=None, time=None, **kwargs)#
- connected_components()#
Extracts connected components of the graph using a union-find algorithm. The components are returned as a list of
Dataobjects, where each object represents a connected component of the graph.data = Data() data.x = torch.tensor([[1.0], [2.0], [3.0], [4.0]]) data.y = torch.tensor([[1.1], [2.1], [3.1], [4.1]]) data.edge_index = torch.tensor( [[0, 1, 2, 3], [1, 0, 3, 2]], dtype=torch.long ) components = data.connected_components() print(len(components)) >>> 2 print(components[0].x) >>> Data(x=[2, 1], y=[2, 1], edge_index=[2, 2])
- Returns:
A list of disconnected components.
- Return type:
List[Data]
- debug()#
- edge_subgraph(subset)#
Returns the induced subgraph given by the edge indices
subset. Will currently preserve all the nodes in the graph, even if they are isolated after subgraph computation.- Parameters:
subset (LongTensor or BoolTensor) – The edges to keep.
- classmethod from_dict(mapping)#
Creates a
Dataobject from a dictionary.
- get_all_edge_attrs()#
Returns all registered edge attributes.
- get_all_tensor_attrs()#
Obtains all feature attributes stored in Data.
- stores_as(data)#
- subgraph(subset)#
Returns the induced subgraph given by the node indices
subset.- Parameters:
subset (LongTensor or BoolTensor) – The nodes to keep.
- to_dict()#
Returns a dictionary of stored key/value pairs.
- to_heterogeneous(node_type=None, edge_type=None, node_type_names=None, edge_type_names=None)#
Converts a
Dataobject to a heterogeneousHeteroDataobject. For this, node and edge attributes are splitted according to the node-level and edge-level vectorsnode_typeandedge_type, respectively.node_type_namesandedge_type_namescan be used to give meaningful node and edge type names, respectively. That is, the node_type0is given bynode_type_names[0]. If theDataobject was constructed viato_homogeneous(), the object can be reconstructed without any need to pass in additional arguments.- Parameters:
node_type (torch.Tensor, optional) – A node-level vector denoting the type of each node. (default:
None)edge_type (torch.Tensor, optional) – An edge-level vector denoting the type of each edge. (default:
None)node_type_names (List[str], optional) – The names of node types. (default:
None)edge_type_names (List[Tuple[str, str, str]], optional) – The names of edge types. (default:
None)
- to_namedtuple()#
Returns a
NamedTupleof stored key/value pairs.
- update(data)#
Updates the data object with the elements from another data object. Added elements will override existing ones (in case of duplicates).
- validate(raise_on_error=True)#
Validates the correctness of the data.
- property num_features: int#
Returns the number of features per node in the graph. Alias for
num_node_features.
- property num_nodes: int | None#
Returns the number of nodes in the graph.
Note
The number of nodes in the data object is automatically inferred in case node-level attributes are present, e.g.,
data.x. In some cases, however, a graph may only be given without any node-level attributes. :pyg:`PyG` then guesses the number of nodes according toedge_index.max().item() + 1. However, in case there exists isolated nodes, this number does not have to be correct which can result in unexpected behavior. Thus, we recommend to set the number of nodes in your data object explicitly viadata.num_nodes = .... You will be given a warning that requests you to do so.
- class LapPE(max_pe_dim, include_eigenvalues=False, include_first=False, concat_to_x=True, **kwargs)#
Bases:
BaseTransformLaplacian Positional Encoding (LapPE) transform.
This computes the smallest eigenvectors of the normalized Laplacian matrix and appends them as node features (structural encodings). Optionally pads to a fixed dimension.
- Parameters:
- max_pe_dimint
Maximum number of eigenvectors to use (dimensionality of the encoding).
- include_eigenvaluesbool, optional
If True, concatenates eigenvalues alongside eigenvectors. Shape then becomes
[num_nodes, 2 * max_pe_dim]. Default is False.- include_firstbool, optional
If False, removes eigenvectors corresponding to (near-)zero eigenvalues (constant eigenvector in connected graphs). Default is False.
- concat_to_xbool, optional
If True, concatenates the encodings with existing node features in
data.x. Ifdata.xis None, creates it. Default is True.- **kwargsdict
Additional arguments (not used).
- __init__(max_pe_dim, include_eigenvalues=False, include_first=False, concat_to_x=True, **kwargs)#
- forward(data)#
Compute the Laplacian positional encodings for the input graph.
- Parameters:
- dataData
Input graph data object.
- Returns:
- Data
Graph data object with Laplacian positional encodings added.
- eigsh(A, k=6, M=None, sigma=None, which='LM', v0=None, ncv=None, maxiter=None, tol=0, return_eigenvectors=True, Minv=None, OPinv=None, mode='normal')#
Find k eigenvalues and eigenvectors of the real symmetric square matrix or complex Hermitian matrix A.
Solves
A @ x[i] = w[i] * x[i], the standard eigenvalue problem for w[i] eigenvalues with corresponding eigenvectors x[i].If M is specified, solves
A @ x[i] = w[i] * M @ x[i], the generalized eigenvalue problem for w[i] eigenvalues with corresponding eigenvectors x[i].Note that there is no specialized routine for the case when A is a complex Hermitian matrix. In this case,
eigsh()will calleigs()and return the real parts of the eigenvalues thus obtained.- Parameters:
- Andarray, sparse matrix or LinearOperator
A square operator representing the operation
A @ x, whereAis real symmetric or complex Hermitian. For buckling mode (see below)Amust additionally be positive-definite.- kint, optional
The number of eigenvalues and eigenvectors desired. k must be smaller than N. It is not possible to compute all eigenvectors of a matrix.
- Returns:
- warray
Array of k eigenvalues.
- varray
An array representing the k eigenvectors. The column
v[:, i]is the eigenvector corresponding to the eigenvaluew[i].
- Other Parameters:
- MAn N x N matrix, array, sparse matrix, or linear operator representing
the operation
M @ xfor the generalized eigenvalue problemA @ x = w * M @ x.
M must represent a real symmetric matrix if A is real, and must represent a complex Hermitian matrix if A is complex. For best results, the data type of M should be the same as that of A. Additionally:
If sigma is None, M is symmetric positive definite.
If sigma is specified, M is symmetric positive semi-definite.
In buckling mode, M is symmetric indefinite.
If sigma is None, eigsh requires an operator to compute the solution of the linear equation
M @ x = b. This is done internally via a (sparse) LU decomposition for an explicit matrix M, or via an iterative solver for a general linear operator. Alternatively, the user can supply the matrix or operator Minv, which givesx = Minv @ b = M^-1 @ b.- sigmareal
Find eigenvalues near sigma using shift-invert mode. This requires an operator to compute the solution of the linear system
[A - sigma * M] x = b, where M is the identity matrix if unspecified. This is computed internally via a (sparse) LU decomposition for explicit matrices A & M, or via an iterative solver if either A or M is a general linear operator. Alternatively, the user can supply the matrix or operator OPinv, which givesx = OPinv @ b = [A - sigma * M]^-1 @ b. Regardless of the selected mode (normal, cayley, or buckling), OPinv should always be supplied asOPinv = [A - sigma * M]^-1.Note that when sigma is specified, the keyword ‘which’ refers to the shifted eigenvalues
w'[i]where:if
mode == 'normal':w'[i] = 1 / (w[i] - sigma).if
mode == 'cayley':w'[i] = (w[i] + sigma) / (w[i] - sigma).if
mode == 'buckling':w'[i] = w[i] / (w[i] - sigma).(see further discussion in ‘mode’ below)
- v0ndarray, optional
Starting vector for iteration. Default: random
- ncvint, optional
The number of Lanczos vectors generated ncv must be greater than k and smaller than n; it is recommended that
ncv > 2*k. Default:min(n, max(2*k + 1, 20))- whichstr [‘LM’ | ‘SM’ | ‘LA’ | ‘SA’ | ‘BE’]
If A is a complex Hermitian matrix, ‘BE’ is invalid. Which k eigenvectors and eigenvalues to find:
‘LM’ : Largest (in magnitude) eigenvalues.
‘SM’ : Smallest (in magnitude) eigenvalues.
‘LA’ : Largest (algebraic) eigenvalues.
‘SA’ : Smallest (algebraic) eigenvalues.
‘BE’ : Half (k/2) from each end of the spectrum.
When k is odd, return one more (k/2+1) from the high end. When sigma != None, ‘which’ refers to the shifted eigenvalues
w'[i](see discussion in ‘sigma’, above). ARPACK is generally better at finding large values than small values. If small eigenvalues are desired, consider using shift-invert mode for better performance.- maxiterint, optional
Maximum number of Arnoldi update iterations allowed. Default:
n*10- tolfloat
Relative accuracy for eigenvalues (stopping criterion). The default value of 0 implies machine precision.
- MinvN x N matrix, array, sparse matrix, or LinearOperator
See notes in M, above.
- OPinvN x N matrix, array, sparse matrix, or LinearOperator
See notes in sigma, above.
- return_eigenvectorsbool
Return eigenvectors (True) in addition to eigenvalues. This value determines the order in which eigenvalues are sorted. The sort order is also dependent on the which variable.
- For which = ‘LM’ or ‘SA’:
If return_eigenvectors is True, eigenvalues are sorted by algebraic value.
If return_eigenvectors is False, eigenvalues are sorted by absolute value.
- For which = ‘BE’ or ‘LA’:
eigenvalues are always sorted by algebraic value.
- For which = ‘SM’:
If return_eigenvectors is True, eigenvalues are sorted by algebraic value.
If return_eigenvectors is False, eigenvalues are sorted by decreasing absolute value.
- modestring [‘normal’ | ‘buckling’ | ‘cayley’]
Specify strategy to use for shift-invert mode. This argument applies only for real-valued A and sigma != None. For shift-invert mode, ARPACK internally solves the eigenvalue problem
OP @ x'[i] = w'[i] * B @ x'[i]and transforms the resulting Ritz vectors x’[i] and Ritz values w’[i] into the desired eigenvectors and eigenvalues of the problemA @ x[i] = w[i] * M @ x[i]. The modes are as follows:- ‘normal’ :
OP = [A - sigma * M]^-1 @ M, B = M, w’[i] = 1 / (w[i] - sigma)
- ‘buckling’ :
OP = [A - sigma * M]^-1 @ A, B = A, w’[i] = w[i] / (w[i] - sigma)
- ‘cayley’ :
OP = [A - sigma * M]^-1 @ [A + sigma * M], B = M, w’[i] = (w[i] + sigma) / (w[i] - sigma)
The choice of mode will affect which eigenvalues are selected by the keyword ‘which’, and can also impact the stability of convergence (see [2] for a discussion).
- Raises:
- ArpackNoConvergence
When the requested convergence is not obtained.
The currently converged eigenvalues and eigenvectors can be found as
eigenvaluesandeigenvectorsattributes of the exception object.
See also
eigseigenvalues and eigenvectors for a general (nonsymmetric) matrix A
svdssingular value decomposition for a matrix A
Notes
This function is a wrapper to the ARPACK [1] SSEUPD and DSEUPD functions which use the Implicitly Restarted Lanczos Method to find the eigenvalues and eigenvectors [2].
References
[1]ARPACK Software, opencollab/arpack-ng
[2]R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK USERS GUIDE: Solution of Large Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods. SIAM, Philadelphia, PA, 1998.
Examples
>>> import numpy as np >>> from scipy.sparse.linalg import eigsh >>> identity = np.eye(13) >>> eigenvalues, eigenvectors = eigsh(identity, k=6) >>> eigenvalues array([1., 1., 1., 1., 1., 1.]) >>> eigenvectors.shape (13, 6)
- get_laplacian(edge_index, edge_weight=None, normalization=None, dtype=None, num_nodes=None)#
Computes the graph Laplacian of the graph given by
edge_indexand optionaledge_weight.- Parameters:
edge_index (LongTensor) – The edge indices.
edge_weight (Tensor, optional) – One-dimensional edge weights. (default:
None)normalization (str, optional) –
The normalization scheme for the graph Laplacian (default:
None):1.
None: No normalization \(\mathbf{L} = \mathbf{D} - \mathbf{A}\)2.
"sym": Symmetric normalization \(\mathbf{L} = \mathbf{I} - \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2}\)3.
"rw": Random-walk normalization \(\mathbf{L} = \mathbf{I} - \mathbf{D}^{-1} \mathbf{A}\)dtype (torch.dtype, optional) – The desired data type of returned tensor in case
edge_weight=None. (default:None)num_nodes (int, optional) – The number of nodes, i.e.
max_val + 1ofedge_index. (default:None)
Examples
>>> edge_index = torch.tensor([[0, 1, 1, 2], ... [1, 0, 2, 1]]) >>> edge_weight = torch.tensor([1., 2., 2., 4.])
>>> # No normalization >>> lap = get_laplacian(edge_index, edge_weight)
>>> # Symmetric normalization >>> lap_sym = get_laplacian(edge_index, edge_weight, normalization='sym')
>>> # Random-walk normalization >>> lap_rw = get_laplacian(edge_index, edge_weight, normalization='rw')
- to_scipy_sparse_matrix(edge_index, edge_attr=None, num_nodes=None)#
Converts a graph given by edge indices and edge attributes to a scipy sparse matrix.
- Parameters:
Examples
>>> edge_index = torch.tensor([ ... [0, 1, 1, 2, 2, 3], ... [1, 0, 2, 1, 3, 2], ... ]) >>> to_scipy_sparse_matrix(edge_index) <4x4 sparse matrix of type '<class 'numpy.float32'>' with 6 stored elements in COOrdinate format>