topobench.transforms.data_manipulations.positional_and_structural_encodings module#
Combined Positional and Structural Encodings Transform.
- class BaseTransform#
Bases:
ABCAn abstract base class for writing transforms.
Transforms are a general way to modify and customize
DataorHeteroDataobjects, either by implicitly passing them as an argument to aDataset, or by applying them explicitly to individualDataorHeteroDataobjects:import torch_geometric.transforms as T from torch_geometric.datasets import TUDataset transform = T.Compose([T.ToUndirected(), T.AddSelfLoops()]) dataset = TUDataset(path, name='MUTAG', transform=transform) data = dataset[0] # Implicitly transform data on every access. data = TUDataset(path, name='MUTAG')[0] data = transform(data) # Explicitly transform data.
- abstract forward(data)#
- class CombinedPSEs(encodings, parameters=None, **kwargs)#
Bases:
BaseTransformCombined PSEs transform.
Applies one or more pre-defined positional or structural encoding transforms (LapPE, RWSE) to a graph, storing their outputs and optionally concatenating them to data.x.
- Parameters:
- encodingslist of str
List of structural encodings to apply. Supported values are “LapPE” for Laplacian Positional Encoding and “RWSE” for Random Walk Structural Encoding.
- parametersdict, optional
Additional parameters for the encoding transforms.
- **kwargsdict, optional
Additional keyword arguments.
- __init__(encodings, parameters=None, **kwargs)#
- forward(data)#
Apply the transform to the input data.
- Parameters:
- datatorch_geometric.data.Data
The input data.
- Returns:
- torch_geometric.data.Data
The transformed data with added structural encodings.
- class Data(x=None, edge_index=None, edge_attr=None, y=None, pos=None, time=None, **kwargs)#
Bases:
BaseData,FeatureStore,GraphStoreA data object describing a homogeneous graph. The data object can hold node-level, link-level and graph-level attributes. In general,
Datatries to mimic the behavior of a regular :python:`Python` dictionary. In addition, it provides useful functionality for analyzing graph structures, and provides basic PyTorch tensor functionalities. See here for the accompanying tutorial.from torch_geometric.data import Data data = Data(x=x, edge_index=edge_index, ...) # Add additional arguments to `data`: data.train_idx = torch.tensor([...], dtype=torch.long) data.test_mask = torch.tensor([...], dtype=torch.bool) # Analyzing the graph structure: data.num_nodes >>> 23 data.is_directed() >>> False # PyTorch tensor functionality: data = data.pin_memory() data = data.to('cuda:0', non_blocking=True)
- Parameters:
x (torch.Tensor, optional) – Node feature matrix with shape
[num_nodes, num_node_features]. (default:None)edge_index (LongTensor, optional) – Graph connectivity in COO format with shape
[2, num_edges]. (default:None)edge_attr (torch.Tensor, optional) – Edge feature matrix with shape
[num_edges, num_edge_features]. (default:None)y (torch.Tensor, optional) – Graph-level or node-level ground-truth labels with arbitrary shape. (default:
None)pos (torch.Tensor, optional) – Node position matrix with shape
[num_nodes, num_dimensions]. (default:None)time (torch.Tensor, optional) – The timestamps for each event with shape
[num_edges]or[num_nodes]. (default:None)**kwargs (optional) – Additional attributes.
- __init__(x=None, edge_index=None, edge_attr=None, y=None, pos=None, time=None, **kwargs)#
- connected_components()#
Extracts connected components of the graph using a union-find algorithm. The components are returned as a list of
Dataobjects, where each object represents a connected component of the graph.data = Data() data.x = torch.tensor([[1.0], [2.0], [3.0], [4.0]]) data.y = torch.tensor([[1.1], [2.1], [3.1], [4.1]]) data.edge_index = torch.tensor( [[0, 1, 2, 3], [1, 0, 3, 2]], dtype=torch.long ) components = data.connected_components() print(len(components)) >>> 2 print(components[0].x) >>> Data(x=[2, 1], y=[2, 1], edge_index=[2, 2])
- Returns:
A list of disconnected components.
- Return type:
List[Data]
- debug()#
- edge_subgraph(subset)#
Returns the induced subgraph given by the edge indices
subset. Will currently preserve all the nodes in the graph, even if they are isolated after subgraph computation.- Parameters:
subset (LongTensor or BoolTensor) – The edges to keep.
- classmethod from_dict(mapping)#
Creates a
Dataobject from a dictionary.
- get_all_edge_attrs()#
Returns all registered edge attributes.
- get_all_tensor_attrs()#
Obtains all feature attributes stored in Data.
- stores_as(data)#
- subgraph(subset)#
Returns the induced subgraph given by the node indices
subset.- Parameters:
subset (LongTensor or BoolTensor) – The nodes to keep.
- to_dict()#
Returns a dictionary of stored key/value pairs.
- to_heterogeneous(node_type=None, edge_type=None, node_type_names=None, edge_type_names=None)#
Converts a
Dataobject to a heterogeneousHeteroDataobject. For this, node and edge attributes are splitted according to the node-level and edge-level vectorsnode_typeandedge_type, respectively.node_type_namesandedge_type_namescan be used to give meaningful node and edge type names, respectively. That is, the node_type0is given bynode_type_names[0]. If theDataobject was constructed viato_homogeneous(), the object can be reconstructed without any need to pass in additional arguments.- Parameters:
node_type (torch.Tensor, optional) – A node-level vector denoting the type of each node. (default:
None)edge_type (torch.Tensor, optional) – An edge-level vector denoting the type of each edge. (default:
None)node_type_names (List[str], optional) – The names of node types. (default:
None)edge_type_names (List[Tuple[str, str, str]], optional) – The names of edge types. (default:
None)
- to_namedtuple()#
Returns a
NamedTupleof stored key/value pairs.
- update(data)#
Updates the data object with the elements from another data object. Added elements will override existing ones (in case of duplicates).
- validate(raise_on_error=True)#
Validates the correctness of the data.
- property num_features: int#
Returns the number of features per node in the graph. Alias for
num_node_features.
- property num_nodes: int | None#
Returns the number of nodes in the graph.
Note
The number of nodes in the data object is automatically inferred in case node-level attributes are present, e.g.,
data.x. In some cases, however, a graph may only be given without any node-level attributes. :pyg:`PyG` then guesses the number of nodes according toedge_index.max().item() + 1. However, in case there exists isolated nodes, this number does not have to be correct which can result in unexpected behavior. Thus, we recommend to set the number of nodes in your data object explicitly viadata.num_nodes = .... You will be given a warning that requests you to do so.