topobench.nn.encoders.kdgm module#
KDGM module.
- class DGM_d(base_enc, embed_f, k=5, distance='euclidean', sparse=True)#
Bases:
ModuleDistance Graph Matching (DGM) neural network module.
This class implements a graph matching technique that learns to sample edges based on distance metrics in either Euclidean or Hyperbolic space.
- Parameters:
- base_encnn.Module
Base encoder for transforming input features.
- embed_fnn.Module
Embedding function for further feature transformation.
- kint, optional
Number of edges to sample in each graph. Defaults to 5.
- distancestr, optional
Distance metric to use for edge sampling. Choices are ‘euclidean’ or ‘hyperbolic’. Defaults to ‘euclidean’.
- sparsebool, optional
Flag to indicate sparse sampling strategy. Defaults to True.
- __init__(base_enc, embed_f, k=5, distance='euclidean', sparse=True)#
Initialize internal Module state, shared by both nn.Module and ScriptModule.
- forward(x, batch, fixedges=None)#
Forward pass of the Distance Graph Matching module.
- Parameters:
- xtorch.Tensor
Input tensor containing node features.
- batchtorch.Tensor
Batch information for graph-level processing.
- fixedgestorch.Tensor, optional
Predefined edges to use instead of sampling. Defaults to None.
- Returns:
- tuple
A tuple containing four elements: - base_encoded_features (torch.Tensor) - embedded_features (torch.Tensor) - sampled_edges (torch.Tensor) - edge_sampling_log_probabilities (torch.Tensor)
- sample_without_replacement(logits)#
Sample edges without replacement using a temperature-scaled Gumbel-top-k method.
- Parameters:
- logitstorch.Tensor
Input logits representing edge weights or distances. Shape should be (n, n) where n is the number of nodes.
- Returns:
- tuple
A tuple containing two elements: - edges (torch.Tensor): Sampled edges without replacement - logprobs (torch.Tensor): Log probabilities of the sampled edges
- pairwise_euclidean_distances(x, dim=-1)#
Compute pairwise Euclidean distances between points in a tensor.
- Parameters:
- xtorch.Tensor
Input tensor of points. Each row represents a point in a multidimensional space.
- dimint, optional
Dimension along which to compute the squared distances. Defaults to -1 (last dimension).
- Returns:
- tuple
A tuple containing two elements: - dist (torch.Tensor): Squared pairwise Euclidean distances matrix - x (torch.Tensor): The original input tensor
- pairwise_poincare_distances(x, dim=-1)#
Compute pairwise distances in the Poincarè disk model (Hyperbolic space).
- Parameters:
- xtorch.Tensor
Input tensor of points. Each row represents a point in a multidimensional space.
- dimint, optional
Dimension along which to compute the squared distances. Defaults to -1 (last dimension).
- Returns:
- tuple
A tuple containing two elements: - dist (torch.Tensor): Squared pairwise hyperbolic distances matrix - x (torch.Tensor): Normalized input tensor in the Poincarè disk